

netraf
A Network Analyzer and Traffic Logger

http://netrafd.sourceforge.net/

 2

netraf – A Network Analyzer and Traffic Logger

 3

The Project

 netraf is a C written, POSIX threads specification compatible
set of programs, allowing to monitor all network traffic
routed through the machine it is installed on, helping administrators
in bandwidth shaping and load profiling. Flexible
and easy configuration of logging options, statistics
and periodical summaries.
 netraf consist of netrafg, netrafd and netrafl.

netraf – A Network Analyzer and Traffic Logger

 4

netraf – A Network Analyzer and Traffic Logger

 5

Table of Contents

1. Authors ..7

2. Introduction ..8

3. Project Goals ...10

4. Theory...11

netraf Operation Diagram..11

netraf Shared Memory Model..................................12

netrafd Working Scheme ...17

netrafl Working Scheme ..19

"MYCAP" Packet Capture Library21

netraf Configuration Files Syntax23

5. Project ChangeLog ...25

6. Program Documentations.................................30

7. Issues ...30

netrafd Issues ..31

netrafg Issues ..32

netrafl Issues ...33

8. Literature ..34

netraf – A Network Analyzer and Traffic Logger

 6

netraf – A Network Analyzer and Traffic Logger

 7

1. Authors

Mateusz Styrczula – dr4k@users.sourceforge.net

• whole netraf idea and project management,
• netrafg (ncurses, pthreads GUI),
• shared memory model and it’s implementation,
• code chunks,
• netrafg documentation and screenshots,
• netraf Operation Diagram

and netraf Shared Memory Model articles,
• netraf project page,
• printed documentation preparation,

Michał Kraszewski – regiss@users.sourceforge.net

• netrafd packet capturing daemon,
• MYCAP packets capturing library,
• misc netraf utility-helpers (bash scripts),
• code chunks,
• netrafd documentation (man pages),
• netrafd Working Scheme

and MYCAP Packet Capture Library articles,

Tomasz Jędrzejczak – tomek_j@users.sourceforge.net

• netrafl logging daemon,
• config-files handling library,
• netrafl documentation (man pages),
• autoconf scripts,
• code chunks
• netrafl Working Scheme

and netraf Configuration Files and Filters Syntax articles,

netraf – A Network Analyzer and Traffic Logger

 8

2. Introduction

About

 netraf is a programming project being in realization at Institute of
Computer Science at Wrocław University (in Poland) as our License
Work. Project's main target is to develop application helping in some
aspects of Network Load Profiling.

Background
 Wait a minute... There are many applications like that – so why
write another? For a simple reason – we couldn't find one which solves
following problems:

• let's say we need to know how much data (GB, MB, kB...
whatever) are passing particular network interface on our
machine monthly. How to do it? We can read that information
exported from kernel (/proc/net/dev) via ifconfig, but linux

is storing it in two integer (32 bit) variables (one for RX, one for
TX), so after transmitting about 4GB of data via device, this
counters will overflow – their contents are useless for us. Of
course we have packet counters per device, but every packet
has different size... Beside this; what happens when for some
reason (i.e. no power for a while) machine needs to be
restarted?

• second way is to run IPTraf or similar program as a daemon (or
in a screen session), and then use one from the bunch of log-
analisys script to gather information we need. But this solution
(beside it's inelegant nature) has some disadvantages:

o you can't run any log-analyzing script while logging

application is working – log files are empty (at least
those with statistics – like that from IPTraf's „LAN
Station Monitor”), so you have to break logging, make
analyze, and start logging again – very bad,

o if you're doing something like:
tcpdump -i eth0 -n -vvv > ./somelog.txt &

yes, contents of logfile are accessible immediately, but
wait a week and check that file size...,

o As mentioned above this solution is also not immune to

sudden, random machine restarts,

netraf – A Network Analyzer and Traffic Logger

 9

• The same problems we can met if we want to generate monthly
(quarterly, yearly...) statistics for certain (or all) machines in a
LAN (of course we're talking about gathering statistics on some
router/firewall/NAT machine etc...).

Beside of everything; you can of course find some way to survey
certain network parameters via log-inspecting scripts – I'm not
claiming that it's impossible, but it would be extremely hard to
automate.

Challenge
 Assume hypothetical situation:
We are spreading internet connection to several users but have some
transfer limit. We want to be fair to every user, and we want that
everyone have equal chances to enjoy internet resources. But users –
like users; one of them are only receiving/sending emails, using chats,
reading web-pages etc..., while others are using P2P networks,
listening to internet radios, downloading huge ISOs etc.
We must find method to measure every user transfer and restrict him
for example only to ICMP echo request/answers in case he exceed his
limit (e.g. user_lmit = global_limit / number_of_users). Of

course we're not talking about buying an dedicated, expensive
hardware solution for this.

Solution
 Of course – netraf!! We can assign rule to each machine's MAC
address which defines maximal transfer per some period and define
action what to do when rule's limit is exceeded (it could be, for
example script running tc or iptables with appropriate arguments).

Vision
 Thus, we could go further; using netraf an administrator can notice
that while some users exceeds their transfer limits, others don't. With
an eye to possibly best and efficient connection usage he can gradually
increase transfer limits for first group of users and proportionally
decrease for second.

netraf – A Network Analyzer and Traffic Logger

 10

3. Project Goals

• division into three parts:
o daemon process (netrafd) - capturing packets and analyzing

them (according to fully-configurable user-defined filters),
o daemon process (netrafl) - logging statistics to files,
o interactive (ncurses) program (netrafg) showing "what's

happening" live, and - in some way - remote control for
daemon processes described above,

• immune to sudden restarts of machine and electric power shortage,
• ability to log certain network traffic informations (depending on

applied filter type):
o gathering statistics by network interface(s):

 amount of data (RX and TX) bytes,
 count of transferred packets and IP packets,
 count of transferred Broadcast, Multicast and "routed-

through" packets,
o gathering statistics by network MAC addresses:

 amount of data (RX and TX) bytes per MAC,
 count of transferred packets and IP packets per MAC,
 average data rates,

o gathering statistics by network TCP connections:
 amount of data (DOWN and UP) bytes per one TCP

connection,
 count of transferred IP packets per connection,
 average data rates for choosen connection,

o gathering statistics by network IP addresses:
 amount of data (IN and OUT) bytes per IP address,
 count of transferred IP packets,

• modularized structure witch allow users to write their own filters
and logging rules,

• user-defined filter consist of:
o source or destination MAC address,
o source or destination IP address,
o source or destination TCP/UDP port,
o network interface to listen on,
o perl-compatible regular expression to be matched to packet

data,
• user-defined logging rule consist of:

o whether captured packets should be logged to file,
o if above is true, what is the period the log-file should be

updated,
o directory path, where the log-file should be stored,

netraf – A Network Analyzer and Traffic Logger

 11

4. Theory

netraf Operation Diagram

netraf – Network Analyzing Tool – consist of three independent,
autonomous programs:

• netrafg - Graphical User Interface program. It is "remote
control" allowing user to steer particular parameters of
daemons described below. It is also the only "window" showing
everything live.

• netrafd - This is in fact "work horse" of whole project. It is
responsible for packet capturing, applying filters to them and
generating statistics.

• netrafl is a logging daemon. It's only work is writing statistics
gathered by netrafd to files.

 Beside the complexity of every component in netraf project, major
thing is communication. We have to realize, that every of the three
programs are independent processes that have their own memory
space allocated by system separately. Also we must take in
consideration fact, that simple communication protocol (implemented
for example on UNIX sockets) wouldn't be sufficient - netrafd is
"producing" lot of data that have to be read by netrafg as well as by
netrafl. Thus we need data structure with random access allowing
many processes to read at one time and at least one process with a
possibility to write. And that is netraf Shared Memory Model which
meets these assumptions.
 When netrafd is starting to gather statistics, it is creating one
shared memory segment and inform readers about that memory
unique identifier. Then every interested reader can "connect to" that
memory and read data that are interesting to him. It is important to
know, that one working instance of netrafd can create multiple shared
memory segments - one segment per one type of logging.

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/theory/netrafd_working_scheme.html
http://drvm.sign.a.la/theory/netrafl_working_scheme.html
http://drvm.sign.a.la/theory/shmem.html

 12

netraf Shared Memory Model

Preface

IPC (InterProcess Communication) mechanisms was introduced in
UNIX System V.2 by AT&T corp. It consist of:

• semaphores,
• shared memory,
• message queues,

All of above are often called "System V IPC". We're interested in shared
memory implementation. For details of use I recommend N. Matthew
and R. Stones book - "Beginning Linux Programming". Basically, the
idea is quite simple: one program requests for memory block and then
gets from operating system two things - pointer to that memory and
special unique identifier. Next, every other processes that want to gain
in access to shared memory must use that unique identifier to "attach
memory" and gets pointer in their own address spaces. Every processes
can use shared memory exactly as if it was allocated by malloc()

function. If one process performs write to shared memory, changes are
immediately visible for every other processes having access to it. If
work with shared memory is done, it has to be detached by all

netraf – A Network Analyzer and Traffic Logger

 13

processes and deallocated by exactly one. Shared memory is very
efficient way of passing data between many non related processes, but
have some limits:

• doesn't have it's own synchronization method (thus
programmers are using semaphores, or messages sending via
pipes to synchronize),

• number of shared memory blocks and total blocks size is limited,

According to above limits (especially number of shared memory blocks
limit) we can't treat request for new shmem block and malloc()

function equally. That's not all - we must remember that every request
for memory (it is not important which type) is very expensive. If we
want built efficient, dynamic data structure, we have to take care of
appropriate management of one continuous data block.

 Let's characterize what we want from our data-structure:

• it has to be multi-accessible. More precise: we want to allow one
process writing to it, and many (at least two) processes reading
it at a same time,

• writing process must have possibly fastest random access to
every part of data,

• writing process must have possibility of deleting, changing
existing or adding new portions of data,

• adding, searching and deleting data must be as fast as possible,
• every "reading process" must be able to read data in some

logical order: from "beginning" to "end",
• it has to be guaranteed that "path" from logical begin of memory

to logical "end" will be available in every moment,
• when "reading process" finishes reading memory it have to

check if amount of data it reads are equal to data stored in
memory (writing process could make some changes during
"reading process" work),

Multi - accessibility
 Multi-accessibility to our data structure is provided by shared
memory IPC mechanism. Must take into consideration, that shared
memory is a special addresses range, created by IPC and appearing in
processes user spaces. The point is, that physical memory pointers
(pointing to the same shared memory segment) peculiarly differs in
different processes. So, if we want to "recover" original producer
pointer value (it is explained later, for what reason) we have to store it
in shared memory. Thus we describe SHMEM header structure:

netraf – A Network Analyzer and Traffic Logger

 14

/** header of shared memory */
typedef struct shmem_header_t{

 /** based on this pointer every reader
 can calculate offset to his mapped memblock */
 void *producer_mem_point;

 /** pointer to first used bucket */
 void *head;

 /** number of buckets allocated in memory */
 size_t n_buckets;

 /** number of "used" buckets */
 size_t used_buckets;

 /** we don't know what kind of structures will be stored,
 thus we need their size */
 size_t bucket_size;

} shmem_header_t;

This kind of structure will be placed at "top" of every shared memory
block. Because above type is known at compilation time, every
"memory consumer" can cast his own shared memory pointer to this
type and gain access to every information stored in header.

Random access

 Fast random access can be achieved by Hash Table implementation.
Instead of storing "real data", every hash-table bucket is storing
pointer to appropriate place in shared memory. Such hash table is
created in "producer's" private memory, thus accessible only for him.

Modifying data

 When shared memory block is created (let's assume N buckets), the
corresponding cyclic list (build of N elements pointing to free buckets in
shared memory) is created in producer's private memory. Therefore
operating on memory can be described as follows:

• adding new bucket to memory:
1. pointer to free bucket is taken from cyclic's list "walking

head",
2. "walking head" is moved to next logical position,
3. appropriate data is copied to shared memory,
4. every used shared memory bucket contains pointer to next

used bucket (or NULL), so appropriate pointers (newly
allocated bucket, logically previous bucket and eventually
"head" pointer in SHMEM header structure) is set,

netraf – A Network Analyzer and Traffic Logger

 15

5. using hash-function (we're using Phong's congruential linear
hash implementation), based on key of actually adding
bucket, hash-code is generated,

6. pointer taken from "free nodes list" (in p. 1.) is stored in
hash_table,

• searching for bucket (testing if it exists):
1. based on currently searched bucket key, hash-code is

generated,
2. if in hash table such hash code isn't empty, and keys

(searched one and founded in hash table) are equal, bucket
exists.

• deleting bucket:
1. check if bucket exists,
2. update "pointer to next used bucket" in logically previous

bucket in shmem,
3. add pointer to "free nodes list" to element pointed by

"walking tail",
4. move "walking tail" to next logical position,

As you can see, all above functions boil down to some operations on
pointers and calculating hash-codes. In fact, only cost is in copying
memory (when adding a new bucket).

Reading data

 As mentioned above every used shared memory bucket has pointer
to logically next bucket. Every "consumer" that connects to shared
memory, can read "head" pointer (to first used bucket) and then pass
whole list till NULL... But - little nuance is hiding here. When we was
talking about multi-accessibility we were saying that pointer to
beginning of shared memory block can have different values in
individual processes.

 Let's assume that we have two buckets in shared memory. One
bucket have pointer called "next" and pointing it to second bucket. We
have two independent processes which have pointers to first bucket.
First process is "writer" and it created both buckets (especially it sets
value of "next" pointer in first bucket). Second process is "reader" and
it is trying to read buckets data from shared memory. If it tries to read
first bucket - everything will be OK. But then, it tries to read data from

netraf – A Network Analyzer and Traffic Logger

 16

place pointed by "next" pointer of first bucket and it gets segmentation
fault. This is because both processes have different address spaces
assigned by system. The way getting appropriate pointers from
"reader" process is count difference between "writer" and "reader"
pointer to first bucket values and then add that difference to every
pointer value. That's why we have "producer_mem_point" pointer
stored in SHMEM header.

Error immunity

 Taking into consideration, that our data structure is multi-accessible
(means that many uncommon processes can operate on one portion of
data at the same time) we have to prevent deadlocks, races and
starvation. Normally we would use semaphores or any other
synchronization techniques, but in this case it isn't necessary (or rather
plain unwanted). Let's review how our shared memory is used:

• one memory producer with permission to write (having all
"helper" structures described above), doing random memory
modifications,

• many (in netraf project only two) readers, "walking" through
list,

Please notice, that efficiency of netrafd daemon strongly depends on
shared memory structure random access speed. If we were using
semaphore for synchronization purposes, it could happen that one of
"reading process" closes semaphore and starts reading. During that
time, system's planner can assign CPU time for "writing process". If
there were some ethernet packets waiting for processing, "writing
process" will try to close semaphore and will hung. What’s more - there
could be more "reading processes" waiting, so during that time "writing
process" loose many packets (I'm omitting starving situation - IPC
semaphores implementation assures that processes waiting in queue to
close semaphore will be chosen randomly). It is unacceptable. Our
shared data structure must allow "writing process" doing it's job
immediately in every time quantum. This entails following problems:
what happens if during reading "writing process" changes some data
(maybe several times)? After a moment of thinking, we can specify
following situations:

• just after reading, it could be more data buckets in memory than
"reading process" read,

• it could be less data buckets in memory than "reading process"
read,

• number of buckets read and that stored in shared memory
structure are equal, but data differs,

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/theory/netrafd_working_scheme.html

 17

Solution of above problems isn't easy in general situation. But in our
case it is simple; we must remember, that "reading processes" are
renewing their work periodically (in particular netrafg renewing
reading process form scratch about 10 times per second). So... we've
decided that we can put "used_buckets" variable into SHMEM header
structure and apply comparing rule to every reader: depending on
application of reader (some readers can perform reading often - such
as netrafg, some of them can read memory relatively rarely - such as
netrafd) there will be some "epsilon" value. If difference between
number of read buckets and "used_buckets" value (as for absolute
value) will be greater than epsilon, all read buckets are treated as
"false" and reading process is started immediately.

netrafd Working Scheme

netrafd - network traffic capturing and analyzing daemon.

netraf – A Network Analyzer and Traffic Logger

 18

 The main goal of the netrafd is to capture packets from the
interfaces installed on the machine, process them and create statistics,
dependent on the user defined packet filters.

 As you can see on the picture above, the whole idea of the netrafd
is quite simple. It uses the MY[p]cap library to open many packet
capturing threads associated with packet handling functions. The
mycap loop waits until a packet arrives and after basic preprocessing
passes it to the associated function.

 Packet handling functions compare the data from packet headers
with applied filter and if the packet match the desired criteria it is
further processed. Function extracts needed data from the raw packet
and creates or updates an appropriate structure in the shared memory.

 And now, a short info about netrafd internals. In fact, netrafd is a
bunch of packet logging threads managed by one 'mother' process. It
is the mother process that receives and process signals, read the
configuration file and create new (or stop) the logging threads. Every
logging thread, during the initialization process, is given it's own
shared memory block, filtering rule, and is assigned to one of the
packet handling functions. There are few types of packet handling
functions, that process the received packets in their own specific way.

 User defined filters may consist of source and destination mac
addressed, source and destination IP and ports, interface that the
logging thread should listen at, and the regular expression that the
data transferred by packet should be matched to.

 After meting the filter criteria, the data from packet headers is
extracted. Every packet is built of layers encapsulated one by another,
from the top layers, which create easy to use interface for the user
applications, through the network layer to the datalink layer. Every
ethernet packet contains an ethernet header, almost the lowest layer
protocol, in it's header are defined the hardware (MAC) addresses of
the receiver and sender and a field telling what kind of next layer
protocol was used. In most cases the next layer protocol will be IP
protocol which among many more or less interesting flags will tell us
the source and destination IP addresses, also the protocol version,
'time to live' and of course the kind of the fourth layer protocol
encapsulated.
The fourth layer is the session layer, and its two main protocols are
UDP (connectionless) and TCP. In their headers are defined the source
and destination ports, in the TCP header there are many interesting
flags used to maintain the connection, by reading those flags we can,
for example figure out the current state of the connection.

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/theory/mycap.html

 19

And finally after the fourth layer protocol header, in most cases, till the
end of the captured packet would be the data carried by the packet.
Having all this data, the packet handling functions can easily group
packets by machines in the network, their IP addresses or the
interfaces that the packets came through. When placed on main node
in the local network, netrafd could easily count the number of
computers in the network, or manage any task that has something to
do with analyzing network traffic. All it requires is a packet handling
function, which will define the way packets are analyzed.

netrafl Working Scheme

netrafl - network logging daemon.

 This tool is used to log data gathered by netrafd into files. It may
be useful if we want to analyze traffic much older than from last server
reboot, which allows to define traffic shaping scripts more precisely.
netrafl working scheme is quite simple. First, it reads his configuration
file, where are specified writers to be logged. Then, creates one thread
for every writer. Here begins main part: logging and it lasts until
interruption. Before netrafl closes, it cleans all backup log files and
leaves one log file per writer, which actually has been logged.

 Now the details. netrafl configuration file consist of "globals"
section and sections named as writers we want to log. "globals" can
have two entries. "files" indicating number of files created by one
writer, and "default_period" logging time per file. This means, that
writer will be logged every "default_period" / "files" seconds. We can
insert entries: "files" and "period" into the writer sections. Their
meaning is similar to those from "globals", but they are more
important, and simply override them. Let's look at the example:

#globals section should always be the first one in the
file
[[globals]]
files = "4";
default_period = "360";
[[]]

[[writer_1]]
[[]]

netraf – A Network Analyzer and Traffic Logger

 20

[[writer_2]]
files = "6";
[[]]

[[writer_3]]
period = "160";
[[]]

[[writer_4]]
files = "5";
period = "50";
[[]]

 As we can see, writer_1 will be logged in 4 files every 360 seconds,

writer_2 in 6 every 360 seconds, writer_3 in 4 files every 160

seconds, and writer_4 in 5 files every 50 seconds.

 After reading configuration file, netrafl prepares log files and
creates threads. Every thread waits until his time period elapsed and
chooses the oldest backup file, then reads shared memory filled by
netrafd, and dumps all data into that file.

 When netrafl is interrupted, it names newest log as writer name
with ".log" suffix, and the rest of files is removed. Before netrafd
starts to capture the packets it can open any log file and fill shared
memory with data form it. What happens if there was a blackout, and
netrafl didn't manage to clean up logs? There is no problem, because
netrafd uses special functions, which look for the newest backup.

 netrafd has also ability to memorize logs of writers which are
deleted by netrafg. Suppose user has deleted writer 'if_stat'. It will be
renamed to 'if_stat_currenttimestamp_.log', instead of 'if_stat.log'.
This operation prevents loss of logged data, when user defines new
writer named as the old one.

 Data in log files have the same syntax as configuration files, which
allows to read logs using configuration files functions. There is one
limitation to netrafl. It can log only ifstat and macstat types, because
connstat and ipstat have too many data, so logging it could seriously
slow down the machine.

netraf – A Network Analyzer and Traffic Logger

 21

MYCAP Packet Capture Library

MY[p]CAP - simple packet capture library...

 MYcap is a small set of functions that make packet capturing easy.
It allows users to write their own packet processing functions and don't
care about the methods to obtain the raw packets. All that user have
to know is the way packets are built, and how to extract data from the
raw packets.

There are only three steps in capturing packets with mycap:

 Creating a new session with mycap, which causes a new raw packet
listening socket is created in the system. Through this socket we'll be
able to receive a raw binary stream from packets flow, going from and
to any network interface installed on the system. Running a packet
capturing loop. This is the heart of mycap, here all the packets are
actually captured and passed to packet handling function. Mycap loop

netraf – A Network Analyzer and Traffic Logger

 22

is in fact a passive loop waiting for incoming packets, when called
inside other program it will stop execution of code until it ends (end
loop function). Starting the packet capturing loop requires a packet
handling function, which will be associated with current session. Every
time the packet loop captures a packet it passes it to an associated
packet handling function.

 The only limitation is that the packet handling function must be of
specific prototype:

void *function(void *, mycap_header *, unsigned char *);

 In the first argument it gets the parameters passed by user, then
the header prepared by mycap loop (code below) and the pointer to
the buffer containing the raw packet.

/* The header passed to the packet handling function,
contains additional information about the captured packet */
typedef struct mycap_header_s{
 /* size of the captured packet in bytes */
 int caplen;

 /* name of the interface the packet came through */
 char ifname[8];

 /* special field describing whether is is an incoming,
 outgoing or maybe a broadcast or mutlicast packet */
 unsigned char pkttype;

} mycap_header_t;

 After passing the packet to the function, the loop will wait for the
function to finish its work, before it will pass it another packet. It's
because the time required by the function to process the packet
depends on the packet filters applied to that function and the execution
time of the function itself, which can vary on slower cpu types. While
reading packets, loop uses the system buffer, but if the packet
processing function requires more time then the rate of incoming
packets, instead of running another function to process the excess of
packets, the loop drops them. This way even if some packets are
dropped, the loop won't cause any overload to the system.
Using the end loop function on a mycap session will stop the packet
reading loop and continue executing the code below the call to the
mycap loop. The loop may be restarted at any later time.

 To end packet capturing finally, user closes the mycap session, the
packet socket is closed and memory used by the session is freed. After
this point, to run packet capturing loop, user must create another
mycap session.

netraf – A Network Analyzer and Traffic Logger

 23

netraf Configuration Files Syntax

 Configuration files are used by all netraf programs (netrafd,
netrafg and netrafl) to read or write every configurable aspects of
them. Their syntax is clear and human readable, so the user can easily
change settings to meet his demands. Operations on configuration files
are divided on two levels:

• low level - allows simple operations like inserting text or reading
single line

• high level - looks after correct syntax, proper positioning of
inserting text, etc.

This division makes eventual changes much more easier to develop.

Configuration interface
 It is a collection of functions allowing low-level operations on
specified file. First of all it must be opened. All necessary structures
will be initialized and ready to work. We do this by calling iconf_open()
function. It will return pointer to iconf_t structure, and will be used in
every operation until it is closed. After then, we can read the file line
by line using iconf_getline function, insert any text at given position,
clean area in the file appointed by start position and end position,
finally override selected line. When we finished working with file, it
should be closed by iconf_close() function.

Configuration file syntax

 Basically, all configuration files consist of sections. Each section
begins with name, which must be enclosed with a pair of '[[' and ']]'
strings. Moreover every section must end with '[[]]' string. Section can
have any number of entries. Entry is simply a line containing entry
name, equation mark, quoted value, and semicolon as terminator. We
can also insert comments into the file. It must begin with '#' character
and all data after it will be ignored until end of line. Let's look at the
configuration file example:

#here is comment
[[section_name]]
entry_name = "value"; #comment
another_entry_name = "value";
[[]]

netraf – A Network Analyzer and Traffic Logger

 24

[[section_name_2]]
entry_name = "value";
another_entry_name = "value";
[[]]

#this section has no entries
[[section_name_3]]
#entry_name = "value";
[[]]

 Now, knowing how configuration file should look like, let's explain
how to control it. At the beginning it must be opened (as we did with
configuration interface) by conf_open() function. Pointer to conf_t
structure will be returned. How to read it? There are two ways. First
one is sequential. We call get_first_section() function to move to the
first section. It'll return it's name or NULL if there is no section in the
file. Then, using next_section() we get other sections, until NULL is
returned. Second way is to call goto_section() function. But we must
know exact name of section we want to go. There is also an option to
get name of current section, by calling current_section(). Retrieving
entry values from current section is similar operation. get_first_entry()
and next_entry() are used to review following entries giving their
names. Finally, to get entry value current_entry() function is used.
There is also a shortcut. We can use get_value() with entry name as
one of the arguments, to search whole section for it. We will get value,
or NULL if there was no such entry.

 Inserting new sections or entries into the configuration file is even
more easy than reading it. We use new_section() to add new section,
new_pair() to add new entry in the current section and
delete_section() to delete one. An example showing the usage of all,
mentioned functions is available in code chunks.

netraf – A Network Analyzer and Traffic Logger

 25

5. Project ChangeLog

24.02.2005
OK... Here we are. It's time to invent something
interesting.

26.02.2005
I've register some free domain, configure primary
and secondary DNS. It's time to bring some http
server up.

03.03.2005
We are working on describing major Project Goals.
Those are in VERY unofficial state, and probably
they will change.

05.03.2005
netraf project "web-page creating process" has
been started. From now http://netrafd.sign.a.la/ is
the official web-address of project.

09.03.2005
Michał is trying to create an account and register
netraf at SourceForge.net.

First steps in network programming with pcap
library in linux. It's quite easy. I'm diggin' in
documentation.

10.03.2005 I've configured some test-environments (linux
2.4.xx, FreeBSD 5.1 with generic kernel, Cygwin
under Windows®) wondering if some ioctl() calls
will be portable (NO :(, at least it won't be a child's
play).

netraf code parts (hmm... "early stages") are
available.

After looking at opensource.org licenses page we
have chosen BSD License - it's short and plain.

13.03.2005

Short introduction (and explanation "why?") to
netraf is available.

netraf project is registered at SourceForge.net!
Thus, new addresses are available:
http://www.sourceforge.net/projects/netrafd/ and
http://netrafd.sourceforge.net/. 15.03.2005

Project page is a little modernized (added a bit of
CSS and some cosmetic changes).

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/members.html
http://freedns.afraid.org/
http://www.dyndns.org/
http://rollernet.us/
http://www.apache.org/
http://www.apache.org/
http://drvm.sign.a.la/goals.html
http://netrafd.sign.a.la/
http://sourceforge.net/
http://www.tcpdump.org/
http://www.kernel.org/
http://www.kernel.org/
http://www.freebsd.org/
http://www.cygwin.com/
http://www.microsoft.com/windows/
http://drvm.sign.a.la/chunks/index.html
http://www.opensource.org/
http://opensource.org/licenses/
http://drvm.sign.a.la/license.html
http://drvm.sign.a.la/introduction.html
http://www.sourceforge.net/
http://www.sourceforge.net/projects/netrafd/
http://netrafd.sourceforge.net/
http://www.w3.org/Style/CSS/

 26

28.03.2005 our project page can be found via google.com since
25.03.2005! PS: Happy Easter!!

02.04.2005
I'm starting work with GUI. Learning NCURSES
Library from wonderful NCURSES Programming
HOWTO.

05.04.2005

Our second "first steps" in pcap (now it's Michał
turn to figure out how it all works), some packets
captured, now we know how this big machinery
works, lots of fun with tracing packet flow through
system.

07.04.2005

NCURSES library is amazing, but insufficient to
build convenient User Interface. We need good
thread-model; solution: POSIX-threads
specification. It's well described in Mark Mitchell's
book - "Advanced Linux Programming".

08.04.2005
Tons of packets captured. Work on counting
packets by MAC addresses begun.

09.04.2005
Found some implementation of hash table, which
would nicely fit into our project. Tweaking some
features, assimilation process in progress.

We've noticed the need for some kind of
communication protocol (GUI and daemons have to
communicate in some way).

Tomek is learning all about autoconf. We will have
"professional" configure script and Makefiles :). 10.04.2005

First worth mentioning success with netrafd part of
the project: packets are flowing through machine,
counters are spinning... Looks like everything will
eventually work.

12.04.2005

Small trip into the world of advanced linux
programming. First thoughts that tracing packets
going through system might not be as easy as it
looked... Back to the drawingboard, time to refresh
knowledge about packet structure, size of particular
fields in packet headers.

Finally - we've described how netraf will be
working. We'll invite you to reading changed
project goals. 14.04.2005

Amazed by the fact that small and simple things

netraf – A Network Analyzer and Traffic Logger

http://www.google.com/
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/
http://www.tcpdump.org/
http://www.gnu.org/software/ncurses/ncurses.html
http://www.gnu.org/software/autoconf/
http://drvm.sign.a.la/goals.html

 27

tend to become big and complex when they come
in large numbers. There are so many network
protocols, from link layer to session layer, and
every one of them have its own header. Great, big
world of possibilities opened its gates for us, and
crushed us with endless complexity of the problem.
Another step in specifying the goals of the project
helped to overcome the crisis.

17.04.2005

The packets from one interface are counted by MAC
addresses. Don't know why, but something is going
wrong with linux pseudo interface "any" (way to
capture on all interfaces). Investigation in progress.

18.04.2005

Another part of code almost working, first steps to
connection logging. Connections will be
remembered by two pairs (IP and PORT). Reading
about the three way handshake in TCP protocol,
and trying to understand the process of closing
connection.

19.04.2005

Encountered another problem; this time it is about
the hash table implementation - it doesn't fit our
needs. It implements the LRU algorithm which
causes it to dynamically shift physical position of
the hashes in table. So... when we have one writer
and many readers, different readers would have
different readings from the structure. What's more,
even the same reader could read some entry twice
or crash when trying to read entry that is being
moved. We need a hashtable that would give some
interface for readers, where data is static.

Shared memory model born and is described now.
Mateusz starts coding it.

22.04.2005

Can't focus on one thing, started work on counting
packets for interface statistics.

23.04.2005

Stopped working. Thinking and reading about
interface "any" in linux kernel. The problem is that
when capturing packets from interface "any", the
source MAC is set to something like
00:00:01:00:00:06, and I don't know what to do
with it - how to recover the original source mac.

25.04.2005
First GUI screenshot is available! "Menu system"
based on NCURSES menus library is very near...

26.04.2005
netrafg "Menu system" is passing tests
(screenshot available).

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/screenshots/index.html
http://www.gnu.org/software/ncurses/ncurses.html
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/menus.html
http://drvm.sign.a.la/screenshots/index.html

 28

02.05.2005

Working with existing netrafd code, rewriting and
optimizing functions, commenting code, trying to
figure out how to put everything together. Working
on threading, and thinking how to split code into
autonomous parts.

04.05.2005
Shared memory model is ready to use (available in
Code Chunks).

05.05.2005 Rewrote parts of netrafd to use shmem.

06.05.2005

"... I was who you are...
 You will be who I am..."
Goodbye...
I'm sure we'll meet each other again some day.
M.S.

12.05.2005

Goodbye to pcap. Change of plans; we'll write our
own, simple library to capture packets. Why? As
mentioned before, Michał couldn't figure out how to
get machine source hardware address while
listening on interface "any".

netrafg "Menu system" is ready to use. It is
thread-safe and using NCURSES menu and panel
libraries.

18.04.2005
The "mycap" set of functions is ready. It presents a
simple interface similar to the one presented by
pcap, so it shouldn't be difficult to rearrange
existing code to use it instead of pcap.

19.05.2005
Finished the MAC statistics module. Interface
statistics module is also capturing packets on all
interfaces.

20.05.2005
Organized all netrafd functions into one interface,
allowing simple adding and managing of modules.
Using shmem made whole work much easier.

21.05.2005 "Literature" section added to project page.

22.05.2005

Interface statistics module is finished. Now it listens
on all interfaces, and counts incoming and outgoing
bytes/packets. Also knows how to recognize
broadcast, multicast and loopback packets.

23.05.2005 We've invented Config-file module interface. Tomek
is working on whole library.

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/chunks/index.html
http://www.tcpdump.org/
http://www.gnu.org/software/ncurses/ncurses.html
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/menus.html
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/panels.html
http://www.tcpdump.org/
http://www.tcpdump.org/
http://drvm.sign.a.la/literature.html

 29

Started to write parts of filtering module, which will
allow us to add user filters to packet capturing
functions.

26.05.2005
We have moved our project page to
sourceforge.net since "a.la" domain no longer
exists.

27.05.2005 We began working on "man" pages to netraf.

28.05.2005
"Theory" section added. You're invited to look at
"netraf Operation Diagram".

Tomek introduced first working version of Config-
file module.

30.05.2005
netraf Shared Memory Model, netrafd working
scheme and "MYCAP" packet capture library articles
are finally done.

03.06.2005
There are more and more dialog boxes in netrafg
(form.h library usage).

06.06.2005 First working version of netrafl is ready for tests.

08.06.2005

netrafg Interface Statistics, MAC Statistics, IP
Statistics and TCP Connection Statistics windows
are done. Every window is owned by different
thread, so every change in individual netrafd
structure are visible immediately.

09.06.2005
A major bug in shmem implementation found and
fixed (Code Chunks updated). It was mistake in
deleting element from hash table.

10.06.2005
Change of technology in configuration files,
because usage of mmap wasn't stable enough

16.06.2005
netrafg has two "screen-savers" (available in code
chunks separately).

17.06.2005
Configuration Files library with example is available
in Code Chunks.

18.06.2005
New articles in "Theory" section: netrafl Working
Scheme and netraf Configuration Files and Filters
Syntax

19.06.2005 "Documentation" section appeared.

netraf – A Network Analyzer and Traffic Logger

http://www.sourceforge.net/
http://drvm.sign.a.la/theory/index.html
http://drvm.sign.a.la/theory/op_diagram.html
http://drvm.sign.a.la/theory/shmem.html
http://drvm.sign.a.la/theory/netrafd_working_scheme.html
http://drvm.sign.a.la/theory/netrafd_working_scheme.html
http://drvm.sign.a.la/theory/mycap.html
http://drvm.sign.a.la/theory/index.html
http://drvm.sign.a.la/theory/netrafl_working_scheme.html
http://drvm.sign.a.la/theory/netrafl_working_scheme.html
http://drvm.sign.a.la/theory/configs.html
http://drvm.sign.a.la/theory/configs.html
http://drvm.sign.a.la/documentation/index.html

 30

20.06.2005 New screenshots of netrafg added.

21.06.2005
netraf finally has professional "configure" and
"make" scripts!

22.06.2005
We invite you to download first official beta of
netraf project. (Everything is here).

6. Program Documentations

 All program documentations are available on included CD and on
netraf project page.

7. Project Issues

The first release is finally published.

 Many hours of work have finally paid off, everything seems to work
great. We have tried to make a program that would be in some way
useful for linux administrators, helping them to monitor their network
traffic for longer periods, so they could shape their bandwitch more
accurately. Does it really work? For now netraf allows to monitor
network traffic and analyze it in few basic aspects, meeting our
primary goals, and is a good platform for future development.

 During our work, our goals didn't go that far away from our primary
specification, the main idea has been kept intact, we only changed
technologies used to achieve it. Bugs? None we could find but there
are some possible fixes or improvements though.

netraf – A Network Analyzer and Traffic Logger

http://drvm.sign.a.la/screenshots/index.html
http://prdownloads.sourceforge.net/netrafd/netraf_0.1beta.tar.gz?download

 31

 One thing we didn't achieve is portability - we simply run out of time
to test it and check dependencies on systems other than Linux. The
main reason is we didn't use pcap, that would ensure us the portability
of netrafd. The whole software is made in a way that it can be easily
rewritten to operate on other UNIX-like systems.

 Second thing that has to wait till next release are actions assigned
to writers, that would be triggered if some user defined criteria are
met. This actions would help to automate reactions to some statistics
states, like amount of bytes transfered by given user. The reason is
same as above - time, there is never too much of it.

netrafd Issues

Things that could be done.

 As I mentioned earlier, linux offers so many possibilities that even
after another few months of work there would still be many things that
could be added to netrafd. For now netrafd (on most writer types)
recognizes only ethernet packets, and only IP version 4 protocol.
I think, that 0.1beta status is very adequate, and clearly shows the
relation between things already implemented and things I would like to
implement.
In most cases I completed the primary goals that were set at the
beginning. From things that could be added to this version, and
because of lack of time will appear in next release are:

• simple connection tracking - by now, netrafd uses very simple
method to recognize connections, based on two pairs of IP and
port, and packet flags, to guess the connection state. This
method merely allows us to tell whether the connection is
established or has it already ended, but we can't associate any
additional info about that connection.

• advanced filters - by now, filters allow to filter by specific values
from packet headers, like particular ip, mac address or interface
and I think it would be useful if one could define a value range
(like IP range from 172.12.0.0 to 172.12.100.1, or port range)
or define a wild card (like IP addresses 192.168.0.*)

• more writer types - maybe later we could add more writer types,
for more specific uses, like ones that allow to write data stream
from packets to file (combined with connection tracking this
could open many interesting possibilities).

netraf – A Network Analyzer and Traffic Logger

 32

Things that have changed in specification during implementation.

 The main difference is the pcap library, we intended to use it to
capture the packets for further processing, but I've encountered
problems with using it in multithreaded application, and later on with
interface 'any' - I couldn't find a way to retrieve the source MAC
address from packets that came from that "virtual" interface, I didn't
even try to figure out how to check from which physical interface they
came.

 That was the main reason I wrote my own simple packet capturing
library, that perfectly fits my needs, it may be lacking many of the
pcap functionality, but can be easily extended.

Things I intend to fix.

 For now, while closing, netrafd occasionally hangs for about 4
seconds before exiting, it is because netrafd has to stop all writers,
and if any conn_stat type writer is running with periodical statistics
cleanup enabled, netrafd has to wait for that "garbage collector" to
wake up and terminate, before he can shut down the main process.

netrafg Issues

 Things that will be done in near future. They aren't implemented
now because lack of time. Options and features mentioned below are
grown up during netrafg creation process. Every major assumptions
that we've made at the begin of our work are implemented now. So,
here follows details to do:

• search facilities in every writer window,
• sort facilities in every writer window (by IP-addr, MAC, interface

etc...),
• resizing writer windows,
• miscellaneous key-bindings (eg. [shift]+[tab], correct [esc]

key operation, [alt]+letter menu calls...),

• more configuration dialogs (screen refreshes, saving actual
desktop state...),

• increase security (it is sufficient to have only one daemon that
requires root privileges - netrafd. netrafg, and netrafl can

netraf – A Network Analyzer and Traffic Logger

 33

obtain needed permissions - via some simple autenthication
method - for operations that really need them and just after
such operation get rid of them),

• more user-conveniences (e.g. when creating new writer it will be
nice to have "default" name given to it),

• add "filtering" to GUI "view" options (we're talking only about
filtering at GUI level, not about "filters" mechanism implemented
in netrafd),

netrafl Issues

 There are still many things that can be done to improve netrafl and
configuration files. It has some minor bugs, or features that due to lack
of time couldn't be done yet.

• change config files technology to mmap again - First of all,
mmap technology had to be changed because of instability of
config files implementation. Still I don't know what caused it,
I think that mmaping is really interesting subject and I'm sure it
will be brought back to project. Although new implementation is
more stable, operating on mapped file is much more faster, and
more elegant way of file access. This could cause logging more
data in shorter time, and less CPU usage.

• logging ipstat and connstat into database (PostgreSQL) - Ipstat
and connstat can't be logged as ifstat or macstat. There is one
reason. Simply, in short period of time, there will be too many
data to log. So the machine, on which netrafl runs could slow
down seriously. The idea to solve this problem is professional
database, for example PostgreSQL. It is designed to store large
amount of data, and has very optimal implementation of
inserting, deleting and searching operations. At first, logging
supposed to be done in the way as ifstat and macstat is done.
But problems with configuration files (change the technology to
slower one, to be precise) forced me to forbid logging writers,
which generate too many data.

• some minor bugs related with user privileges - There is a bug
occurring sometimes, when user is trying to insert or delete data
from configuration file without root privileges.

netraf – A Network Analyzer and Traffic Logger

 34

8. Literature

• Programming:
o "The C Programming Language"

Brian W. Kernighan, Dennis M. Ritche
ISBN: 83-204-2719-3

o "Beginning Linux Programming"
Neil Matthew, Richard Stones
ISBN: 83-7243-020-9

o "Advanced Linux Programming"
Mark Mitchell, Jeffrey Oldham, Alex Samuel
ISBN: 83-7243-217-1

o "Professional Linux Programming"
Neil Matthew, Richard Stones
ISBN: 83-7197-495-7

o "Linux Kernel Development"
Robert Love
ISBN: 83-7361-439-7

• Programming techniques and theory:
o "Introduction to Algorithms"

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
Clifford Stein
ISBN: 83-204-2879-3

o "Data Structures and Algorithms"
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman
ISBN: 83-7361-177-0

o "The Design and Analysis of Computer Algorithms"
Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman
ISBN: 83-7197-770-0

o "Programming Pearls"
John Bentley
ISBN: 83-204-2672-8

o "Języki Programowania"
ToMasz Wierzbicki
Symbol Uniwersalnej Klasyfikacji Dziesiętnej: 004.43
2000 Mathematics Subject Classification: 68N15

o "Operating System Concepts"
Abraham Silberschatz, Peter Baer Galvin, Greg Gagne
ISBN: 83-204-2961-7

netraf – A Network Analyzer and Traffic Logger

 35

o "Principles of Concurrent and Distributed
Programming"
M. Ben-Ari
ISBN: 83-204-1996-4

o "Hacker's Delight"
Henry S. Warren, Jr.
ISBN: 83-7361-220-3

• Software engineering:
o "The Art of UNIX Programming"

Eric S. Raymond
ISBN: 83-7361-419-2

o "The Pragmatic Programmer"
Andrew Hunt, David Thomas
ISBN: 83-204-2672-3

o "Writing solid code"
Steve Maguire
ISBN: 83-7197-429-9

o "The Mythical Man-Month"
Frederick P. Brooks, Jr.
ISBN: 83-204-2467-4

o "The Practice of Programming"
Brian W. Kernighan, Rob Pike
ISBN: 83-204-2732-0

o "Extreme Programming. Pocket Guide"
Ward Cunningham
ISBN: 83-7361-343-9

o "Inżynieria Oprogramowania"
Andrzej Jaszkiewicz
ISBN: 83-7197-007-2

• Networking:
o "TCP/IP Network Administration"

Craig Hunt
ISBN: 83-7243-305-4

o "TCP/IP Bible"
Rob Scrimger, Paul LaSalle, Mridula Parihar, Meeta Gupta,
Clay Leitzke
ISBN: 83-7197-668-2

o "Teach yourself TCP/IP in 14 days"
Timothy Parker
ISBN: 83-86718-55-2

netraf – A Network Analyzer and Traffic Logger

 36

o "Introduction to the Internet Protocols"
Charles Hedrick

o "Connected: An Internet Encyclopedia"
Brent Baccala

o "Internet Protocols. Description and Packet Format"
alex@netfor2.com

o "Internet Tutorials"
InetDaemon Enterprises

o "Programming with pcap"
Tim Carstens

• Miscellaneous packages and libraries
documentation:

o "GNU Autoconf manual"
Free Software Foundation, Inc.

o "NCURSES Programming HOWTO"
Pradeep Padala

o "Writing Programs with NCURSES"
Eric S. Raymond, Zeyd M. Ben-Halim, Thomas Dickey

netraf – A Network Analyzer and Traffic Logger

http://www.ifi.uio.no/~od/tcp-ip-intro/tcp-ip-intro.html
http://www.freesoft.org/CIE/Topics/index.htm
http://www.netfor2.com/contents.htm
http://www.inetdaemon.com/tutorials/internet/
http://www.tcpdump.org/pcap.htm
http://www.tldp.org/HOWTO/NCURSES-Programming-HOWTO/
http://dickey.his.com/ncurses/ncurses-intro.html

	netraf Shared Memory Model
	Preface
	Multi - accessibility
	Random access
	Modifying data
	Reading data
	Error immunity
	Configuration interface
	Configuration file syntax

