
Wrocław 22.02.2007 

 
 

 
 

Project Report 

 

 
 

spirit 
Process Migration Layer 

and Abstract Node System 
for Distributed Systems Applications 

 
 
 
 
 
 
 

Mateusz Styrczula Michał Kraszewski 



 

spirit – Process Migration Layer 

2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 “…the Linux philosophy is 'laugh in the face of danger'. 
 Oops. Wrong one. 'Do it yourself'. That's it.” 
 Linus Torvalds, (1996-10-16). 
 Post to linux.dev.kernel newsgroup. 



 

spirit – Process Migration Layer 

3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Project 
 
 spirit is a set of abstract tools (or, actually, an attempt to write them) 

enabling programmer to write a program that can migrate while running from 

one machine to another. 



 

spirit – Process Migration Layer 

4 

Table of Contents 
 
 
 
 

1. Introduction .............................................................. 5 

2. Project overview..................................................... 7 

3. Possible applications ............................................ 8 

4. Issues (future work) ..........................................10 

5. Overview of project source code..................11 

6. Kernel module internals ...................................12 

7. User-space daemon internals ........................14 

8. Literature..................................................................15 



 

spirit – Process Migration Layer 

5 

1. Introduction 

 
About 

 spirit1 is a programming project being in realization at Institute of 
Computer Science at Wrocław University as a part of Distributed 
Operating Systems lecture. Project's main goal is to learn how real 
operating system really works. 

 
 
Background 

 Developing an operating system is not a child’s play. It requires 
good knowledge of algorithms, data structures, programing techniques, 
optimization tips, low-level hardware designs and many more. Designing 
a new operating system is a very hard work requiring one to possess all 
of above combined with programming skills and intuition. Writing own 
fully-featured, supporting variety of hardware operating system from 
scratch is definetely overwhelming task. Nevertheless it is not necessary 
to write an operating system to understand how it is made. There are 
some possibilities helping curious man to achieve it. One of them is 
obvious – Linux! Unfortunatelly the Linux operating system kernel is 
complicated and complex programming project written by the 
programmers from all over the world. In fact, there is source code 
available, but finding out secrets of its functioning can pose some 
difficulty. 
 Writing an application that operates on processes requires 
understanding of general ideas on how they act in a multitasking 
environments, although is not sufficient – it is just a first step in 
grasping how the whole mechanism works. Despite of all above 
difficulties it is worth to make an effort to study this fascinating 
discipline because there are still many things to do. “I will consider the 
job finished when no manufacturer anywhere makes a PC with a reset 
button. TVs don't have reset buttons. Stereos don't have reset buttons. 
Cars don't have reset buttons. They are full of software but don't need 
them. Computers need reset buttons because their software crashes 
a lot...” (Andrew S. Tanenbaum). 

 
 
Process migration 

 Process migration is an issue being studied by scientists for many 
years. Yet we want to propose slightly less scientific approach. The 

                                                 
1 The spirit is an immaterial but ubiquitous substance or energy present individually in all living 
things. Unlike the concept of human souls, which is believed to be eternal and preexisting, a spirit 
develops and grows as an integral aspect of the living being. [1] 



 

spirit – Process Migration Layer 

6 

vision of intelligent beings traversing enormous cyperspace is fascinating 
science-fiction writers for many years. Us too. So, let’s imagine a com-
puter program as a soul2, that is, an immaterial creation, which may 
exist in many dimensions like in computer memory, on printed 
document or in human’s thought... When thinking of its life-space, that 
is, in which it can operate and execute itself, the most natural 
association is operating memory of a computer system. The computer 
program itself does not make an autonomous unit; it is only an 
algorithm, a “recipe”. It doesn’t have its own state. The essence of 
a program are: its state, an algorithm, and an execution unit, therefore 
a running process can be considered as a living being3. It is well known 
that process consists of executable code and a state (variables, stack, 
heap and various flags). But even the smartest code is limited in its 
freedom. Its world is restricted by the boundaries of computer’s 
operating system on which it is running4. 

 
 

The purpose 
 The purpose of the spirit project is to free processes giving them 
the ability to spontaneously5 pass from one machine to another6. To 
achieve this goal one should create fairly complex distributed system, 
built of many layers providing variety of services. 

 
 
 

                                                 
2 The soul, according to many religious and philosophical traditions, is a self-aware ethereal 
substance particular to a unique living being. In these traditions the soul is thought to incorporate 
the inner essence of each living being. [2] 
3 The relationship between an execution unit (a processor) and coded algorithm is a loose analogy 
to the relationship between a spirit and a soul. There are many analogies to the world of living 
(and dead) in the UNIX-like systems. Processes are being killed, they can be in a zombie state, 
there are deamons etc. and it does not confuse anybody. Hence our parallel of process to living 
being. 
4 We think that writing this document in a fairy tale manner makes reading it more pleasant and 
allows us to explain complex things in a natural way. Wonderful examples of that style can be [3] 
and [4]. 
5 Spontaneously – Late Latin spontaneus, from Latin sponte of one’s free will, voluntairly. [5] 
6 Reason for doing it is not necessary. The ability by itself is a reason good enough. We will 
discuss practical uses in chapter 3. 



 

spirit – Process Migration Layer 

7 

2. Project overview 
 

 

We will discuss lower layer of spirit system (Process Migration Layer). It 
consists of: 

 kernel module (Linux version 2.6.x and above), 
 standard C library routines for Process Migration Layer, 
 user-space daemon responsible for transferring processes, 

 
 
Goals 

 We intended to write system allowing process transfer between 
different machines allowing it to maintain state. System is divided into 
three major parts described below. 

 
 kernel module: 
o interface allowing communication between user-space programs 

and kernel functions (achieved), 
o functions: 

 processor registers dump (achieved), 
 structures describing process’ state dump7 (achieved), 
 structures describing process’ memory dump (achieved), 

                                                 
7 Process state in this context means Linux task_struct and mm_struct structures. 

  +--------------------------------------------------+ 
  |              "barking dogs system"               | 
  | or bindings to higher-level programming languages|  >- Example User-App 
  +--------------------------------------------------+ 
                           ^ 
                           | 
                           v 
  +---------------------"Spirit"---------------------+          --+ 
  |                                                  |            | 
  |  +-------------Abstract Node System-----------+  | -+         | 
  |  |+------------------------------------------+|  |  |         | 
  |  ||           upper layer libraries          ||  |  |         | 
  |  |+------------------------------------------+|  |  |         | 
  |  |+---Node---+  +---Node----+     +---Node---+|  |  +- UPPER  | 
  |  ||  alpha 1 |  |  alpha 2  | ... |  alpha N ||  |  |  LAYER  | 
  |  |+----------+  +-----------+     +----------+|  |  |         +- MIDDLEWARE 
  |  +--------------------------------------------+  | -+         | 
  |                       ...                        |            | 
  |  +-----------Process Migration Layer----------+  | -+         | 
  |  | (modules, daemons, lower layer libraries)  |  |  +- LOWER  | 
  |  +--------------------------------------------+  | -+  LAYER  | 
  |                                                  |            | 
  +--------------------------------------------------+          --+ 
           ^              ^                 ^ 
           v              v                 v 
  +------------Connected Systems (TCP/IP)------------+ 
  |  +-----------+  +-----------+     +-----------+  | 
  |  | 1st Linux |  | 2nd Linux | ... | Nth Linux |  |  >- Network OSes 
  |  +-----------+  +-----------+     +-----------+  | 
  +--------------------------------------------------+ 



 

spirit – Process Migration Layer 

8 

 opened files dump (to do), 
 established network connections dump (to do), 
 signal queues and handlers dump (to do), 
 terminal state dump (to do), 
 shared libraries (state and libraries itself) dump (to do), 

o binary file format and handler (achieved), 
 

 standard C library: 
o kernel module communication interface (prototype), 
o transfer daemon communication interface (prototype), 

 
 user-space daemon: 
o process transfer between machines (achieved), 
o required open files transfer (achieved), 
o missing shared libraries transfer (to do), 
o restoring process environment on target machine (to do). 

 
 
 
 
 
 

3. Possible applications 

 
 Apart from the whole debate about souls and spirits (considered 
from computer industry point of view is, to put it mildly, at least 
useless), one can imagine some scenarios of practical usage of 
elements of process migration system. Some of examples could be: 

 Internet, connections between computers, local area networks and 
metropolitan area networks are systematically increasing 
bandwidth. Distributed internet applications are very popular these 
days. Everybody has an oportunity to download an operating 
system or anti-virus program update. Local networks are almost 
everywhere. It is not so hard to imagine an general-mainteneance 
program as an agent traveling through local network and 
performing some administrative tasks (eg. anti-virus scanning, 
disk-space optimization, updating necessary software etc.) 

 Closed-source program licenses. Image processing, office or 
professional engineering software are usually expensive. Let’s 
imagine a user having a computer at home and in his office. If 
a large scale process migration would be possible, such user could 
have his favorite programs set in a one copy (with one license) 



 

spirit – Process Migration Layer 

9 

and use them in different places (launching them on one computer 
and calling them to place where he is currently working). 

 Multi-core processors are common. It is very likely that single 
chips of large scale integration will be manufactured with 
increasing number of intependent processing units. Some aspects 
of process migration between machines will have reflection in 
“micro-world” of multi-core processors. It would be more 
legitimate thinking about it in the context of operating system 
build upon some micro-kernel architecture. In such architecture 
data exchange is based on message passing instead of common 
shared memory. It is proven to be more secure and stable way to 
achieve highly reliable, self-healing operating systems8. 
Breakdown of one component do not have influence on general 
system stability. What in monolithic-kernel based system is 
a “critical” process, in a micro-kernel one not necessairly is. 
Message passing between units of multiprocessor system, when no 
shared memory access is possible between different processing 
units, does not fundamentally differ from message passing 
between processes, even in a very wide area networks. Process 
migration knowledge could be used to reduce the amount of data 
passed between different execution units by transferring processes 
that „talk to each other intensively” to one execution unit allowing 
them to „discuss” via common shared memory. 

 
 
 

                                                 
8 It is Andrew S. Tanenbaum point of view. [6] 



 

spirit – Process Migration Layer 

10 

4. Issues9 (future work) 
 

 Many hours of pleasant work are behind us. Basic functionality is 
achieved, but there is still much to be done. This includes following 
things: 

 
 full and stable working dump of files, message queues, pipes, 

sockets, process current working directory, signal queues, 
handlers and terminal state, 

 dump-file version checking on transfer, 
 shared library support and apropriate load_shlib callback in 

linux_binfmt structure, 

 shared library versioning and transferring on demand, 
 stable and well-documented unified standard C libraries providing 

needed interfaces and functions to manage process transferring 
tasks, 

 searching for needed resources on target host first and then 
transferring them if necessary, 

 support for user permissions other than root, 
 environment rebuilding before process restart, 
 build in security mechanisms (process access control, user 

permissions), 
 sandbox or some kind of playground for incoming processes, 
 host system load control and process transfer permissions 

management, 
 move as many components to user-space as possible, 
 backing up processes and restoring from backup after process 

execution failure on target host, 
 build upper layer (Abstract Node System), description of which is 

far beyond this paper’s subject, 
 
 

                                                 
9 Yes. It may seem, that looking at what is still to be done there is hardly anything done already. 
Although there are many things to be done in the subject solid foundation has been made and 
most of described issues has been investigated. 



 

spirit – Process Migration Layer 

11 

5. Overview of project source code 
 
. 
|-- common  
|   |-- defines.h            - common project definitions, 
|   |-- ioctl_commands.h     - IOCTL commands definitions, 
|   |-- messages.h           - communication protocol between kernel module, 
|   |                          and user-space programs, 
|   |-- structures.h         - structures describing spirit binary file format, 
|   |                          tasks, memory and cpu-registers, 
|   `-- version.h            - project authors, name, version, license type etc., 
|-- d_mon 
|   |-- trans 
|   |-- Makefile 
|   |-- dlib.c               - library providing simple interface allowing 
|   |                          communication with transfer daemon, 
|   |-- dlib.h 
|   |-- dmon.c               - file containing main() function responsible for 
|   |                          initialization of transfer daemon and pasing 
|   |                          control to connection thread, 
|   |-- dmon.h                  
|   |-- dmon_chthrd.c        - connection handling thread - controls particular 
|   |                          connection with daemon, 
|   |-- dmon_chthrd.h 
|   |-- dmon_ctl.c           - functions controling daemon bahavior, like 
|   |                          signal actions, and definitions of control 
|   |                          structures, 
|   |-- dmon_ctl.h 
|   |-- dmon_ioctl.c         - stub for kernel module control library, 
|   |-- dmon_ioctl.h 
|   |-- dmon_main.c          - functions responsible for handling incoming 
|   |                          connections and pasing control to proper 
|   |                          connection handling thread, 
|   |-- dmon_main.h 
|   |-- dmon_msg.c           - unified protocol message functions, allowing to 
|   |                          send and recieve messages, used for both client 
|   |                          and server side communication, 
|   |-- dmon_msg.h 
|   |-- protocol.h           - communication protocol definition, 
|   |-- spirit01.c           - prototype of traveler, 
|   `-- zclient.c            - prototype debug interface, allows sending control  
|                              commands to daemon, 
|-- ioctl_tester 
|   `-- ioctl_tester.c       - a "Swiss Army knife"10 and remote control to every 
|                              single one functionality which is provided by 
|                              spirit kernel module. It’s capable of perform whole 
|                              dump, restart process and also examine the contents 
|                              of dump files and kernel module "health". 
|-- kertinker 
|   |-- Makefile 
|   |-- actions.c            - spirit kernel module work-horse 
|   |                          function definitions, 
|   |-- actions_externs.h 
|   |-- initexit.c           - init and exit module function definitions, 
|   |-- k_mtg.c              - first draft - testing new ideas, notes, misc... 
|   |-- kertink.c            - IOCTL handling function set, 
|   |-- kertink_externs.h 
|   |-- misc_from_kernel.c   - miscellaneous functions from Linux kernel 
|   |                          that are, unfortanetely, not exported, 
|   |-- module_state.h       - module operations state structure, 
|   |-- variables.c          - global module variable definitions, 
|   `-- variables_externs.h 
`-- LICENSE                  - GPL license text, 

                                                 
10 A Swiss Army knife (SAK) is a multi-function pocket knife or multitool. The term "Swiss Army 
knife" is sometimes used generically to describe a tool, such as a software tool, that is a 
collection of special-purpose tools. [7] 



 

spirit – Process Migration Layer 

12 

6. Kernel module internals 
 
kertinker/init_exit.c 

 spirit_module_init () - program's “entry point”, registers 

device /dev/kertinker in system, registers spirit file binary 

format, allocate memory for internal buffer, message-passing 
interface and module-state structure, 

 spirit_module_exit () - executed when module unloading is 

performed. Deregistering device, binary file format, freeing 
allocated memories 

 
kertinker/kertink.c 

 kertink_device_open (), kertink_device_release () - 

responsible for handling device’s opening and closing events, 
 kertink_device_ioctl () - called whenever a process tries  

to do an IOCTL, responsible for calling apropriate “action” handler, 
 
kertinker/actions.c 

 kertink_mp_handle () - called from within 

kertink_device_ioctl () described above. It is bi-directional 

(kernel-space to/from user-space) message passing handling 
function, 

 mp_dump_processor_registers () - responsible for dumping 

process processor general purpose registers, 
 mp_dump_task_struct (), mp_dump_mm_struct (), 

mp_dump_thread_struct () - responsible for dumping (most 

significant parts of) task_struct, mm_struct and thread_struct 
structures, 

 mp_dump_vm_areas_reset () - reset vm_areas dumping 

sequence, 
 mp_dump_vm_bounds () - dump one vm_area_struct structure, 

 mp_dump_vm_data () - dump one “chunk” of process memory, 

 mp_dump_vm_filename () - if memory actually being dumped is 

a file mmaped11 in memory, obtain that file name, 
 spirit_restart () - responsible for restart process from file - 

registered as handler to spirit binary format, invoked by kernel 
itself when any process in system tries to execute a file. This 
function is in fact the core of kernel-side tasks of spirit project. 

 
 
 

                                                 
11 [8] pages 116 to 117 and [9] pages 290 to 293 



 

spirit – Process Migration Layer 

13 

 
kertinker/misc_from_kernel.c 

 access_process_vm () - allow access to another process' address 

space (read/write), 
 
common/defines.h 

 SPIRIT_MAGIC_N - definition of „magic numbers” used to recognize 

spirit binary format, 
 DEVICE_MAJOR_NUM - used device major number, 

 
common/messages.h 

 struct messpass {...} - message passing structure definition, 

 
common/structures.h 

 struct spirit_binfile_header {...} - spirit binary format file 

header description, 
 typedef enum {...} spirit_data_type_t - binary file consists of 

blocks. Every block is of type described in this enumeration. 
 struct spirit_block_header {...} - every data block is 

preceded by this header. 
 
 
 



 

spirit – Process Migration Layer 

14 

7. User-space daemon internals 
 
d_mon/dmon.c 

 main() - initialize control structures, assign signal handling 

functions, daemonize and start a thread awaiting incoming 
connections, after that begin signal handling loop, 

 on SIGTERM - break the signal loop, signal the main connection 

thread to stop and wait while it stops any active connection 
handling threads, free control structures and quit, 

 
d_mon/dmon_main.c 

 dmon_main_proc() - create and bind a server socket to listen for 

incoming connections, enter loop passively waiting for connections 
and spawning new threads to handle them, 

 
d_mon/dmon_chthrd.c 

 connection_thread() - await for messages, and process requests 

from client, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Programs are written in GNU dialect of C programming language 
(which is standard of developing Linux kernel and is an extension to 
ANSI standard). We made an effort to make the source code fulfill 
requirements of „well formatted and legible knowledge piece”. It is 
written to the best of our abilities to be self-explanatory and richly 
commented. We encourage to read definitions of the above functions 
and trace the program control flow. 

 



 

spirit – Process Migration Layer 

15 

8. Literature 
 

 Following books and materials helped us a lot in every stage of 
project developing during near half a year of work. Some of them are 
strictly technical and some are general operating systems knowledge. 
They are solid knowledge foundation.  

 
[1] Wikipedia The Free Encyclopedia (accessed 22.02.2007) 
http://en.wikipedia.org/wiki/Spirit 
 
[2] Wikipedia The Free Encyclopedia (accessed 22.02.2007) 
http://en.wikipedia.org/wiki/Soul 
 
[3] Randal L. Schwartz, Tom Christiansen: Perl Wprowadzenie. 
Wyd. 2. Gliwice: HELION, 2000. ISBN 83-7197-220-2 
Słowo wstępne, s. 9-11 
 
[4] Eric S. Raymond: UNIX Sztuka programowania. 
Gliwice: HELION, 2004. ISBN 83-7361-419-2 
 
[5] Merriam-Webster Online Dictionary (accessed 22.02.2007) 
http://www.m-w.com/dictionary/spontaneous 
 
[6] Tanenbaum-Torvalds Debate: Part II (accessed 22.02.2007) 
http://www.cs.vu.nl/~ast/reliable-os/ 
 
[7] Wikipedia The Free Encyclopedia (accessed 22.02.2007) 
http://en.wikipedia.org/wiki/Swiss_Army_knife 
 
[8] Neil Matthew, Richard Stones: Linux Programowanie 
Warszawa: RM, 1999. ISBN 83-7243-020-9 
Rozdział 3: Praca z plikami, s. 79-119 
Rozdział 4: Środowisko uniksa, s. 121-155 
Rozdział 5:Terminale, s. 157-190 
Rozdział 7: Zarządzanie danymi, s. 233-258 
Rozdział 8: Narzędzia programistyczne, s. 281-301 
Rozdział 10: Procesy i sygnały, s. 347-378 
Rozdział 12: Semafory, pamięć dzielona i kolejki komunikatów, 
 s. 431-447 
Rozdział 13: Gniazda, s. 461-494 
 
[9] Robert Love: Linux Kernel Przewodnik programisty. 
Gliwice: HELION, 2004. ISBN 83-7361-439-7 
 



 

spirit – Process Migration Layer 

16 

Linus Torvalds: Linux Kernel Source Code version 2.6.17 
http://www.kernel.org/ 
http://www.gelato.unsw.edu.au/lxr/source/?a=i386 
 
Mark Mitchell, Jeffrey Oldham, Alex Samuel: 
LINUX Programowanie dla zaawansowanych. 
Warszawa: RM, 2002. ISBN 83-7243-217-1 
 
Neil Matthew, Richard Stones: 
Zaawansowane programowanie w systemie Linux. 
Gliwice: HELION, 2002. ISBN 83-7197-495-7 
Rozdział 26: Sterowniki urządzeń, s. 1019-1055 
 
Moshe Bar: LINUX systemy plików. 
Warszawa: RM, 2002. ISBN 83-7243-256-2 
Rozdział 3: Co to jest system plików?, s. 19-66 
Rozdział 4: Wirtualny system plików Linuksa, s. 69-117 
 
B. W. Kernighan, D. M. Ritche: ANSI C. 
Wyd. 7. Warszawa: WNT, 2002. ISBN 83-204-2719-3 
 
A. Silberschatz, P. B. Galvin, G. Gagne: 
Podstawy systemów operacyjnych. 
Wyd. 6. Warszawa: WNT, 2005. ISBN 83-204-2961-7 
 
A. S. Tanenbaum, M. van Steen: 
Systemy rozproszone Zasady i paradygmaty. 
Warszawa: WNT, 2006. ISBN 83-204-3070-4 
 
D. P. Bovet, M. Cesati: Understanding the Linux Kernel. 
O’Reilly, 2000. ISBN 0-596-00002-2 
 
Michael Beck i in.: Linux Kernel Internals, 
Wyd. 2. Addison Wesley, 1998. ISBN 0-201-33143-8 
 
Mel Gorman: Understanding the Linux Virtual Memory Manager. 
http://www.csn.ul.ie/~mel/projects/vm/guide/pdf/understand.pdf 
 
Mel Gorman: 
Code comentary on the Linux Virtual Memory Manager 
http://www.csn.ul.ie/~mel/projects/vm/guide/pdf/code.pdf 



 

spirit – Process Migration Layer 

17 

Paul Rusty Russel: Unreliable Guide To Locking. 
http://people.netfilter.org/~rusty/unreliable-guides/kernel-
locking/kernel-locking.docbook/lklockingguide.html 
 
Peter Jay Salzman, Michael Burian, Ori Pomerantz: 
The Linux Kernel Module Programming Guide. 
http://www.dirac.org/linux/writing/lkmpg/2.6/lkmpg-2.6.0.html 
 
Alessandro Rubini: Kernel System Calls. 
http://www.linux.it/~rubini/docs/ksys/ 
 

 


